Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 18(1): 15-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35500584

RESUMO

Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.


Assuntos
Porfirinas , Animais , Porfirinas/química , Ecossistema , Mamíferos
2.
J Exp Zool A Ecol Integr Physiol ; 337(6): 645-665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451573

RESUMO

The locomotor behaviors of treeshrews are often reported as scurrying "squirrel-like" movements. As such, treeshrews have received little attention beyond passing remarks in regard to primate locomotor evolution. However, scandentians vary considerably in habitat and substrate use, thus categorizing all treeshrew locomotion based on data collected from a single species is inappropriate. This study presents data on gait characteristics, positional, and grasping behavior of the northern treeshrew (Tupaia belangeri) and compares these findings to the fat-tailed dwarf lemur (Cheirogaleus medius) to assess the role of treeshrews as a model for understanding the origins of primate locomotor and grasping evolution. We found that northern treeshrews were primarily arboreal and shared their activities between quadrupedalism, climbing and leaping in rates similar to fat-tailed dwarf lemurs. During quadrupedal locomotion, they exhibited a mixture of gait characteristics consistent with primates and other small-bodied non-primate mammals and demonstrated a hallucal grasping mode consistent with primates. These data reveal that northern treeshrews show a mosaic of primitive mammalian locomotor characteristics paired with derived primate features. Further, this study raises the possibility that many of the locomotor and grasping characteristics considered to be "uniquely" primate may ultimately be features consistent with Euarchonta.


Assuntos
Cheirogaleidae , Escandêntias , Animais , Marcha , Locomoção/fisiologia , Mamíferos , Tupaia
3.
Integr Comp Biol ; 61(2): 589-602, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33930150

RESUMO

Arboreal mammals navigate a highly three dimensional and discontinuous habitat. Among arboreal mammals, squirrels demonstrate impressive agility. In a recent "viral" YouTube video, unsuspecting squirrels were mechanically catapulted off of a track, inducing an initially uncontrolled rotation of the body. Interestingly, they skillfully stabilized themselves using tail motion, which ultimately allowed the squirrels to land successfully. Here we analyze the mechanism by which the squirrels recover from large body angular rates. We analyzed from the video that squirrels first use their tail to help stabilizing their head to visually fix a landing site. Then the tail starts to rotate to help stabilizing the body, preparing themselves for landing. To analyze further the mechanism of this tail use during mid-air, we built a multibody squirrel model and showed the righting strategy based on body inertia moment changes and active angular momentum transfer between axes. To validate the hypothesized strategy, we made a squirrel-like robot and demonstrated a fall-stabilizing experiment. Our results demonstrate that a squirrel's long tail, despite comprising just 3% of body mass, can inertially stabilize a rapidly rotating body. This research contributes to better understanding the importance of long tails for righting mechanisms in animals living in complex environments such as trees.


Assuntos
Robótica , Sciuridae , Cauda , Acidentes por Quedas , Animais , Modelos Biológicos , Árvores
4.
Curr Biol ; 30(9): 1600-1613.e3, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32169214

RESUMO

The manual and pedal grasping abilities of primates, characterized by an opposable hallux, flat nails, and elongated digits, constitute a unique combination of features that likely promoted their characteristic use of arboreal habitats. These hand and foot specificities are central for understanding the origins and early evolution of primates and have long been associated with foraging in a fine-branch milieu. However, other arboreal mammals occupy similar niches, and it remains unclear how substrate type may have exerted a selective pressure on the acquisition of nails and a divergent pollex/hallux in primates or in what sequential order these traits evolved. Here, we video-recorded 14,564 grasps during arboreal locomotion in 11 primate species (6 strepsirrhines and 5 platyrrhines) and 11 non-primate arboreal species (1 scandentian, 3 rodents, 3 carnivorans, and 4 marsupials). We quantified our observations with 19 variables to analyze the effect of substrate orientation and diameter on hand and foot postural repertoire. We found that hand and foot postures correlate with phylogeny. Also, primates exhibited high repertoire diversity, with a strong capability for postural adjustment compared to the other studied groups. Surprisingly, nails do not confer an advantage in negotiating small substrates unless the animal is large, but the possession of a grasping pollex and hallux is crucial for climbing small vertical substrates. We propose that the divergent hallux and pollex may have resulted from a frequent use of vertical plants in early primate ecological scenarios, although nails may not have resulted from a fundamental adaptation to arboreal locomotion.


Assuntos
Pé/fisiologia , Mãos/fisiologia , Plantas , Primatas/fisiologia , Animais , Fenômenos Biomecânicos , Ecossistema , Feminino , Pé/anatomia & histologia , Lateralidade Funcional , Mãos/anatomia & histologia , Masculino , Especificidade da Espécie
5.
Soft Robot ; 6(3): 346-355, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30855217

RESUMO

Possessing a sense of touch is fundamental for robots to operate outside controlled environments. Nevertheless, pressure and force-sensing technologies are still less mature than vision or proprioception solutions in commercial robots. In this study we present a novel spatially resolved force sensor that allows dynamic measurement of both the intensity and the direction of forces exerted on a custom-shaped surface. Originally designed for biomechanics of arboreal primates, this sensor meets several challenges in engineering robotic skin. Of importance, its ability to measure tangential forces would be instrumental for robotic hands to grasp deformable and unknown objects. Based on optical measurements of deformations, this array sensor presents a soft, biocompatible, weather resistant body, immune to electromagnetic interferences. Central to the cost-effectiveness of this solution is an architecture where a single image sensor handles hundreds of force measurement points simultaneously. We demonstrate the performance of this sensor in reconstructing normal and slantwise forces on a flat prototype adapted to forces under 3 N. Finally, we discuss the broad range of possible customizations and extensions for applications in biomechanics and robotics.

6.
J Hum Evol ; 111: 202-215, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874272

RESUMO

The fossil record of early primates is largely comprised of dentitions. While teeth can indicate phylogenetic relationships and dietary preferences, they say little about hypotheses pertaining to the positional behavior or substrate preference of the ancestral crown primate. Here we report the discovery of a talus bone of the dentally primitive fossil euprimate Donrussellia provincialis. Our comparisons and analyses indicate that this talus is more primitive than that of other euprimates. It lacks features exclusive to strepsirrhines, like a large medial tibial facet and a sloping fibular facet. It also lacks the medially positioned flexor-fibularis groove of extant haplorhines. In these respects, the talus of D. provincialis comes surprisingly close to that of the pen-tailed treeshrew, Ptilocercus lowii, and extinct plesiadapiforms for which tali are known. However, it differs from P. lowii and is more like other early euprimates in exhibiting an expanded posterior trochlear shelf and deep talar body. In overall form, the bone approximates more leaping reliant euprimates. The phylogenetically basal signal from the new fossil is confirmed with cladistic analyses of two different character matrices, which place D. provincialis as the most basal strepsirrhine when the new tarsal data are included. Interpreting our results in the context of other recent discoveries, we conclude that the lineage leading to the ancestral euprimate had already become somewhat leaping specialized, while certain specializations for the small branch niche came after crown primates began to radiate.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , Humanos , Filogenia , Primatas/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...